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ABSTRACT

A method, based on a generic, small-signal equivalent circuit for field-effect transistors, is

proposed for predicting the unity-current-gain frequency, fT , for carbon nanotube devices.

The key to the useful implementation of the method is the rigorous estimation of the values

for the components of the equivalent circuit. This is achieved by numerical differentia-

tion of the charges and currents resulting from self-consistent solutions to the equations of

Schrödinger and Poisson. Sample results are presented which show that fT can have a very

unusual dependence on the gate-source bias voltage. This behaviour is due mainly to the

voltage dependence of the transconductance and capacitance in the presence of quasi-bound

states in the nanotube.

1 INTRODUCTION

Carbon nanotube field-effect transistors (CNFETs) are being seriously considered for meeting

the requirements of the 11 nm technology node [1]. Their DC performance is predicted to

be superior to that of ultimately scaled silicon MOSFETs [2, 3], and impressive values for

drain current and transconductance have already been reported in prototype devices [4].

The AC capabilities of CNFETs are not yet so obvious. So far, measurements on laboratory

devices have been limited by experimental difficulties and parasitics [5, 6, 7]. Thus, the

highest reported frequency of 580 MHz, for operation without signal degradation, cannot be

viewed as a representative value for an intrinsic device1. One way to investigate the AC

capabilities of CNFETs would be to perform AC simulations with the same rigour that has

characterized earlier DC simulations [9, 10]. This means using a self-consistent Schrödinger-

Poisson solver to compute values for the parameters appearing in, for example, a small-signal
1Very recently, operation up to 10GHz has been reported [8], albeit with considerable signal attenuation.
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equivalent circuit, from which a useful metric, such as fT , could be obtained. Through the

use of this self-consistent procedure, we expect a more accurate result than that predicted

in Ref. [11], where capacitances in the equivalent circuit model were computed assuming a

metallic nanotube and electrostatics for an infinitely long coaxial system.

In this paper, we perform a rigorous calculation of the gate-voltage dependencies of

both the transconductance [12, 13], and the capacitances, including the so-called “quantum

capacitance” [13], in order to compute the small-signal, equivalent-circuit parameters, from

which our improved estimates of fT for CNFETs are obtained. This analysis reveals a bias

dependence that is quite unusual, and which may prove useful in voltage-controlled, high-

frequency circuitry.

2 THE SMALL-SIGNAL MODEL

2.1 Equivalent circuit

Starting from Maxwell’s first two equations, and considering a system with three electrodes,

through which charge can enter or leave the system, it follows that

∂Q

∂t
=

∂QS

∂t
+

∂QD

∂t
+

∂QG

∂t
= 0 , (1)

where Q is the total charge within the system, and QS, QD, and QG refer to charges associated

with each of the device’s three terminals, namely: the source, drain, and gate, respectively.

Labelling displacement currents with a superscript d, it follows from Eq. (1) that

ids + idd + idg = 0 , (2)

where the lower-case subscripts indicate that we are going to be dealing with small-signal

parameters. This notation is used also for the voltages, e.g., the total gate voltage vG

comprises a DC voltage VG and an AC small-signal vg. If we suppose that QS, QD, and QG

are functions of time through the application of time-dependent voltages vS(t), vD(t), and

vG(t), then each displacement current will comprise three terms. For example,

idg = −CGS
∂vS

∂t
− CGD

∂vD

∂t
+ CGG

∂vG

∂t
, (3)

where the capacitances come from the set

Cij = ∓∂Qi

∂vj
, i, j = S, D, G , (4)

where the minus sign is taken when i �= j, and the plus sign when i = j [14]. Not all the

capacitances in this set are independent, and it can be easily shown that, for example,

CGG = (CGS + CGD) = (CSG + CDG) . (5)
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Thus, if we now consider vS and vD to be held constant, as is appropriate for an estimation

of fT in the absence of parasitic source and drain resistances, then it follows that

idg = (CSG + CDG)
∂vGS

∂t
. (6)

This displacement current, which is also the total gate current ig, can be computed from an

equivalent circuit, such as is shown in Fig. 1.

Turning now to the conduction currents, we employ the standard quasi-static approach

for a current that depends on two potential differences, i.e., vGS and vDS in this case. In its

linear implementation, this leads to a drain conduction current of

icd = gmvgs + gdsvds . (7)

Here, as we are keeping vDS constant, the term involving the output conductance gds need

not be considered.

This completes the specification of the small-signal equivalent circuit. It is a well-founded

circuit, with the only approximation being the use of quasi-statics to obtain linear expres-

sions for the conduction currents. Note that the interfacial conductance of 4q2T/h, due to

transverse-mode reduction on passing from a large, many-mode electrode to a two-mode,

quasi-1-D nanotube with a transmission probability T [15], is not shown explicitly in Fig. 1,

as it is implicit in the transconductance gm.

On the basis of the circuit shown in Fig. 1, the common-source, short-circuit, unity-

current-gain frequency, as extrapolated from a frequency at which the gain rolls off at

−10 dB/decade, is given by

fT =
gm

2π(CSG + CDG)
. (8)

2.2 Model parameters

In order to relate CSG and CDG to meaningful physical quantities, firstly we split the charges

QS and QD into two components:

QS = QSE + QST ,

QD = QDE + QDT , (9)

where QSE and QDE are charges on the actual source and drain electrodes, respectively; and

QST and QDT are charges on the nanotube that enter via the source and drain electrodes,

respectively. Each of these charges is supplied by the appropriate displacement current, as

illustrated in Fig. 2. A capacitance can now be related to each of the charge components.
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For the source capacitance, for example, we have

CSG = −∂QS

∂vG
= −∂QSE

∂vG
− ∂QST

∂vG

= CSE + CST . (10)

These capacitive components are readily calculated because their related charges can be

computed from a recently described self-consistent, DC, Schrödinger-Poisson solver [9]. This

solver has been adapted to employ Neumann boundary conditions at the non-metallic bound-

ing surfaces in the structure depicted in Fig. 2. In our solver, the source- and drain-related

nanotube charges, QST and QDT , are computed from integrations of the line charges that

are related to the wavefunctions associated with carriers communicating with the system

via the source and drain, respectively. Wavefunctions are computed via the effective-mass

Schrödinger equation with plane-wave solutions assumed in the metal contacts. A phenom-

enological band discontinuity is used to model the electrode-nanotube heterointerfaces as

simple Schottky barriers. Normalization of the wavefunctions is achieved by setting the

probability density current equal to the current expected from the Landauer equation for

ballistic transport. The small-signal parameters CST and CDT are computed for a given

drain bias via numerical derivatives with a perturbation in the gate voltage on the order of

0.1 mV. Similarly, gm is computed from Landauer’s equation.

CSE is associated with the change in the charge that resides on the actual source electrode,

QSE. Similarly, CDE is related to a change in QDE . These charges are computed from

appropriate applications of Gauss’ Law in integral form.

3 RESULTS AND DISCUSSION

Results are presented for a coaxial transistor structure, as shown in Fig. 2, with Schottky-

barrier contacts at the source/tube and drain/tube interfaces. This embodiment, which

avoids the need to dope the nanotube, and which employs the ultimate “multi-gate” to

combat short-channel effects, is being actively pursued experimentally [16]. Here, by way

of an example, we consider a (16,0) carbon nanotube with a radius of 0.63 nm, a length

Lt = 20 nm, and a relative permittivity of 1 [17]. The insulator has a thickness Tins = 2.5 nm,

and its relative permittivity is taken to be 25, as is appropriate for zirconia, which is used

in some high-performance CNFETs [18]. The gate electrode is separated from the source

and drain electrodes by Lsg = Ldg = 4 nm, and has a thickness Tg = 3 nm. The work

function of the gate is taken to be the same as that of the intrinsic nanotube (4.5 eV),

whereas the source and drain metallizations have a work function of 3.9 eV. Although this
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yields an n-type device, inasmuch as the dominant carriers are electrons, p-type operation is

directly analogous, and, owing to the symmetry of the nanotube’s band-structure about the

midgap energy, can be obtained through the use of a higher work function metal. Thus, the

CNFET considered here can be classed as a negative-Schottky-barrier device, such as has

been predicted to give DC characteristics that are superior to those of devices with either

zero- or positive-Schottky barriers at the end contacts [2]. In negative-barrier CNFETs the

conduction current is due to thermionic emission at the source-tube and drain-tube interfaces.

Quantum-mechanical reflection at these interfaces, due to the band discontinuities mentioned

earlier, leads to resonances, and the appearance of quasi-bound states, at least in nanotubes

of the short length considered here. This plays a significant role in determining the values for

the model parameters discussed below. An illustrative example of the charged quasi-bound

states, and the conduction-band profile in the device, is presented in Fig. 3. The example

shows charge in the first and second quasi-bound states, and the appearance of charge in an

additional quasi-bound state in the potential well at the drain end of the device.

The results presented here are intended to illustrate the ability of the proposed method to

provide meaningful estimates of fT for CNFETs. An optimization of the CNFET structure

to suggest an upper bound for fT is not attempted at this stage, but some comments are

offered after the discussion of the present results as to the factors that might be important

in this regard. All the results presented below are for operation at VDS = 0.5 V.

The various components of the capacitance are shown in Fig. 4. Considering, firstly, the

tube capacitance CST due to charge injected from the source, the peak at around VGS =

0.35 V corresponds to alignment in energy of the source Fermi level and the first quasi-bound

state for electrons in the nanotube [13]. The peak in CDT is displaced from the peak in CST

by approximately VDS [13], and corresponds to alignment in energy of the drain Fermi level

and the first quasi-bound state.

Considering now the capacitances associated with changes in charge on the actual end

contacts, it can be seen that these are relatively bias-independent. In fact, this is due to CSE

and CDE being dominated by the regions of overlap of the end contacts with the edges of the

gate electrode. Obviously, this capacitance could be reduced by increasing the separation

between the end contacts and the edges of the gate, or by making the gate electrode thinner,

or by making the end contacts more “needle-like” [19]. The latter could be achieved by

utilizing metallic nanotubes for the source and drain. The total capacitances associated

with each electrode are shown in Fig. 5(a).

We now discuss the transconductance, as shown in Fig. 5(b). Firstly, note that the

choice of end-contact work function renders the device unipolar, except at very low bias.

5



Thus, the hole contribution to the transconductance at moderate and high VGS is negligible.

Secondly, it can be seen that gm reaches a maximum, and then decreases as VGS increases.

This phenomenon has been reported elsewhere [12, 13]. The overall reduction in gm at high

VGS relates to the increasing electron injection from the drain as the potential energy in the

mid-length region of the tube is reduced. The considerable structure in the transconductance

plot is due to the presence of the quasi-bound states referred to earlier. As VGS increases, the

conduction band edge is pushed below the source Fermi level, and as the quasi-bound states

cross this level, gm increases. Thus, the situation is not dissimilar to that which gives rise to

the peaks in capacitance. Indeed, at low temperatures, our simulations reveal that the peaks

in transconductance and capacitance do occur at the same biases (see Fig. 6). Evidently, in

going from T=4 K to T=300 K, thermal broadening causes peaks that are close together to

merge, with the taller one dominating. Thus, the second peak in transconductance dominates

the first, while the opposite is true in the capacitance case.

The changes in capacitance and transconductance discussed above lead to a very interest-

ing and unusual bias dependence in the cut-off frequency fT , as illustrated in Fig. 5(c). For

the example of a 20 nm tube, as used here, fT peaks at about 600 GHz. This is a long way

from the value of 4 THz, which can be inferred from a recent model that ignored the bias de-

pendence of the transconductance and capacitances, and attributed the device capacitance to

that of an infinite coaxial system, with the quantum capacitance given by that of a metallic,

rather than a semiconducting, nanotube [11]. In the finite coaxial system considered here,

the mid-tube quantum capacitance is not explicitly identified, as it does not relate to the

terminals on which the equivalent circuit is based. It is contained within CST and CDT , the

peak values of which turn out to have comparable magnitudes to the electrostatic electrode

capacitances, CSE and CDE , in this particular example; thus, the overall capacitance shows

significant bias dependence.

In future work, we will attempt to optimize the Schottky-barrier CNFET as regards

high-frequency performance. However, in ending this paper, we can make a few comments

regarding the parameters that are likely to be of importance. Clearly, the magnitude of the

band discontinuity at the end contacts is significant. We have used a value of -5.5 eV for

the depth of the metal conduction band below the Fermi level [9]. Higher values may be

appropriate for noble metals of the type that appear suited to end contacts for CNFETs, in

which case one can expect more quantum mechanical reflection and a lower transconductance,

leading to a reduced fT . Increasing the barrier height by increasing the work function of

the end-contact metal (in the case of n-type devices) will significantly degrade performance

because of the appearance of a thick tunneling barrier in the ungated portion of the nanotube.
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Changing the nanotube to one of larger bandgap, yet maintaining the barrier height at about

−Eg/2, may also degrade transconductance, at a given bias, because the ON current can be

expected to be smaller, at least at low gate bias. Further, the peaks in transconductance and

capacitance will be displaced to higher VGS as more depressing of the conduction-band edge

under the gate will be required to align the quasi-bound states with the source Fermi energy.

Increasing the ungated regions Lsg and Ldg should be advantageous in a negative-barrier

device because the electrostatic electrode capacitance will be reduced without a degradation

in gm. We have been quite aggressive in the vertical scaling of our device as we have used

a high permittivity and a small thickness for the gate insulator. Relaxing these values will

not change the resonances, but will shift the peaks in capacitance and transconductance to

higher biases, due to the poorer electrostatic coupling between gate and nanotube. Finally,

we should mention that in non-Schottky barrier CNFETs, in which the source and drain

regions are formed by doping the ungated portions of the nanotube [20, 21], potential wells

will form between the end contacts and the intrinsic, gated part of the nanotube, and could

lead to resonances somewhat similar to those described here if the doped regions are short

enough.

4 CONCLUSIONS

From this work on AC small-signal simulations of Schottky-barrier carbon nanotube field-

effect transistors, it can be concluded that:

1. the generic small-signal, equivalent-circuit model for FETs is appropriate for study-

ing the quasi-static AC performance of CNFETs, provided the model parameters are

rigorously derived;

2. in the case of short nanotubes with Schottky-barrier end contacts, a resonant structure

is formed, leading to the appearance of quasi-bound states;

3. the quasi-bound states lead to gate-bias dependencies of the capacitances and transcon-

ductance, which, in turn, give rise to a short-circuit, unity-current-gain frequency fT

which displays a dependence on VGS that is unusual in its oscillatory nature.
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