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Abstract. Compact expressions are derived for the maximum operating
frequency of carbon nanotube field-effect transistors. The expressions are shown
to be applicable over wide ranges of physical properties, parasitic resistances, and
gate biases. The utility of the expressions is demonstrated by their prompting of
a conservative device design that should lead to fmax > 0.5THz.

1. INTRODUCTION

The frequency fmax, at which the extrapolated power gain becomes unity, is a
well-established figure-of-merit for characterizing the high-frequency performance of
transistors. A useful, compact expression for fmax is available for heterojunction
bipolar transistors [1], but, in Si metal-oxide-semiconductor field-effect transistors, the
need to consider the electrical properties of the substrate makes for a more complicated
situation. However, in carbon nanotube field-effect transistors (CNFETs), the
substrate is not an active part of the device, so the traditional, small-signal equivalent
circuit, in which there are no elements representing the substrate [2, p.441], can be
used as a basis for deriving a useful expression for fmax. Moreover, because of the
small size of CNFETs, the quasi-static approximation should be valid up to very high
frequencies. Here, starting from the small-signal parameters of the equivalent circuit,
we systematically make a series of approximations that lead to compact expressions
for the extrapolated fmax. These expressions are shown to be applicable over a wide
range of conditions, and to be useful in guiding the design of high-frequency devices.

2. MODELING PROCEDURES

The small-signal, extrinsic z-parameters for the equivalent circuit shown in Fig. 1 are
given by the standard expressions [2, p.440]:

z11e = y22/Y + Rsg

z12e = −y12/Y + Rs

z21e = −y21/Y + Rs

z22e = y11/Y + Rsd

Y = y11y22 − y12y21 ,

(1)
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Figure 1. Small-signal equivalent circuit for the CNFET.

where Rsg = Rs + Rg, Rsd = Rs + Rd, and the intrinsic y-parameters are [3, p.378]:

y11 = jω(Cgs + Cgd)
y12 = −jωCgd

y21 = gm − jω(Cm + Cgd)
y22 = gds + jω(Csd + Cgd) .

(2)

The transcapacitance Cm relates non-reciprocal capacitance pairs, and is given by,
for example, Cdg − Cgd. From the components in Eq. (1), an expression for the
radian frequency ωT at which the short-circuit, common-source, current gain reaches
unity, when extrapolated from some lower frequency at which the gain rolls-off at
-10 dB/decade, follows, namely [2, p.441]:

1
ωT

=
1
ωt

[1 + gdsRsd] + RsdCgd , (3)

where the intrinsic “cut-off” frequency is given by

ωt =
gm

(Cgs + Cgd)
. (4)

The assumptions made in arriving at the expressions for the extrapolated unity-
current-gain frequencies are that the frequency at which the extrapolation can properly
begin is subject to the following restrictions:

ω2 ¿ g2
m/(Cm + Cgd)2 (5)

ω2 ¿ gm/(ARs) (6)
ω2 ¿ g2

m/(Cdg + BRs)2 (7)
ω2 ¿ (Cgg + BRsd)2/(ARsd)2 , (8)

where

A = CdgCgd − CggCdd

B = Cgggds + Cgdgm

Cgg = Cgs + Cgd

Cdd = Csd + Cgd .

The above limitations should easily be satisfied by CNFETs intended for operation at
frequencies of several hundreds of GHz . For the power gain, we use Mason’s unilateral
gain [4]:

U =
|z21e − z12e|2

4 [<(z11e)<(z22e)−<(z12e)<(z21e)]
. (9)
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One further restriction on the extrapolation frequency is required to obtain an
expression for U with the desired dependence on ω−2:

ω2 ¿ B2/A2 . (10)

In fact, Eq. (10) is a more stringent restriction than the fourth assumption of Eq. (8),
which is, therefore, rendered redundant.

It follows, after lengthy algebraic manipulation, that U can be written in the form
that is familiar for bipolar transistors [1]:

U =
ωT

4ω2(RC)eff
, (11)

where (RC)eff is an effective time constant. Because the assumptions we wish to make
in order to simplify the expression for fmax affect both ωT and (RC)eff we elect not
to isolate the expression for the latter [1], but, instead, to work on the expression for
the reciprocal cyclic frequency τeff , where

τ2
eff =

(RC)eff
ωT

, (12)

and

fmax =
1

4πτeff
. (13)

With the assumptions made so far, τeff is given by

τ2
eff,1 = B

g2
m
{Rg(Cgg + 2RcB) + Rc [Cgg − Cm

+2Csd + RcB + A
B (gm + 2gds)

]}
,

(14)

where, for convenience, we have assumed similar source and drain contacts, and set
Rs = Rd = Rc.

To make progress in simplifying Eq. (14), one has to compare component values,
which, because of their bias- and device-dependence, cannot be expected to result in
relations that are as generally applicable as the frequency limitations stated earlier in
Eqs. (5)-(8) and (10). We start by asserting

Cgs = Cgd . (15)

The motivations for doing this are the small size and longitudinal symmetry
of CNFETs: the electrodes are inevitably very close together, so the extrinsic
contributions to Cgs and Cgd will be significant; and the symmetry would make
them equal. We can anticipate this equality breaking down at low- and high-gate
bias, when the electrode-dependent quantum-capacitance contribution to Cgs and
Cgd, respectively, is particularly significant [5]. Using Eq. (15) in Eq. (14) leads to a
considerable simplification:

τ2
eff,2 =

C2
gd

gm

(
1 +

2gds

gm

)
(2Rg + Rc)[1 + Rc(gm + 2gds)] . (16)

Finally, in the interests of further simplification, we suggest:

gm À 2gds . (17)

This inequality may break down in CNFETs with small-diameter (large-bandgap)
nanotubes, for which the transconductance is generally less than in those with large-
diameter tubes. The result of this additional assumption is a very compact expression:

τ2
eff,3 =

C2
gd

gm
(2Rg + Rc)(1 + gmRc) . (18)
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In the next section we evaluate the validity of Eqs. (14), (16) and (18) for
several Schottky-barrier CNFETs. The component values are evaluated as described
previously [5], using a Schrödinger-Poisson solver [6], with the inclusion of the complex
band structure of the nanotube [7]. We found that it was not necessary to consider
more than the lowest, doubly-degenerate band for the tubes and bias ranges considered
in this work.

Figure 2. Coaxial CNFET structure. The insulator fills the entire simulation
space not occupied by metal or the nanotube.

3. RESULTS AND DISCUSSION

In seeking ultimate performance limits we examine devices of the coaxial structure
shown in Fig. 2, but we base values for the physical properties on those of presently
realizable planar structures, such as a recent, high-DC-performance device [8]. All
the devices considered here have a gate of length Lg = 50 nm and of thickness
tg = 20 nm, an insulator relative permittivity of 16 (HfO2), and Pd end-contacts of
radius tc = 4 nm. Unless otherwise stated, the contact length is Lc = 100 nm, the gate
underlaps are Lus = Lud = 5 nm, and the contact resistances are computed from a Pd
resistivity of 0.48 kΩ·nm, which can be inferred from Ref. [8]. The data of Ref. [9] was
used for the tube-dependent, end-contact barrier heights, while the work function of
the gate was set equal to that of the nanotube [10]. The latter assignment is arbitrary
in view of the lack of information on other factors, such as oxide charge, that will
affect the threshold voltage in practice, and serves only to change the effective gate
potential. The gate resistance can be expected to have a large effect on fmax [11], but,
in the present absence of knowledge about practical gate connection configurations,
we take, unless otherwise stated, Rg = 1 kΩ. With the dimensions listed above, for
example, Rc ≈ 0.9 kΩ. The trends in the capacitances illustrated in Fig. 1 have been
discussed previously [5, 12], and for the particular devices described here Cgs and Cgd

are on the order of 10 aF.
Firstly, we consider Device 1, which has a nanotube diameter dt = 1.7 nm (taken

to correspond to a tube of chirality (22,0)), for which the Pd contacts produce a
negative barrier for holes of −0.04 eV [9]. The combination of low barrier height and an
insulator thickness of tins = 2.5 nm should produce a device of high transconductance.
Mason’s power gain U is shown in Fig. 3, from which it is clear that, for this particular
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Figure 3. Unilateral power-gain for Device 1 using Eq. (9) (solid), and Eq. (11)
with Eq. (14) (dots), Eq. (16) (circles), and Eq. (18) (crosses). The inset magnifies
the curves near 0 dB. VGS = VDS = −0.5V.

device at the given biases of VGS = VDS = −0.5 V , all the assumptions leading to
Eqs. (14), (16) and (18) are reasonable. The effects of the assumptions do appear,
however, at different VGS , as illustrated in Fig. 4. It can be seen that the lowest
τeff is ≈ 0.16 ps, which corresponds to fmax ≈ 500 GHz. At high, negative, gate
bias, injection of holes from the drain is facilitated [11], leading to an increase in the
quantum-capacitance contribution to Cgd. Thus, assumption Eq. (15) overestimates
Cgs, leading to Eq. (16) overestimating the true τeff at the most negative bias
considered. The effect of assumption Eq. (17) is more severe at high bias because
gm falls off considerably. Again, this is due to holes being injected into the nanotube
from the drain: the resulting hole flow bucks that issuing from the source, reducing
gm. Moreover, gds rises in that bias range, ultimately yielding a ratio 2gds/gm ≈ 1
near VGS = −0.8V and invalidating assumption Eq. (17).
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Figure 4. τeff estimates for Device 1 using Eq. (9) (solid), and Eq. (13) with
Eq. (14) (dots), Eq. (16) (circles), and Eq. (18) (crosses). VDS = −0.5 V .
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We turn now to Device 2, which has a nanotube diameter dt = 0.8 nm (taken to
correspond to a tube of chirality (10,0)), a positive hole-barrier of 0.3 eV at the Pd
end-contacts [9], an increased insulator thickness tins of 8 nm and shorter contacts Lc of
30 nm. The higher barriers and thicker insulator will reduce gm below that of Device 1.
These features should lead to a lower fmax than predicted for Device 1. However, this
should be mitigated somewhat by lower capacitances Cgs and Cgd, due to the larger
tins and smaller Lc. The results shown in Fig. 5 show that fmax is, indeed, significantly
lower than for Device 1. Interestingly, τeff ,2 is a better approximation to the true τeff

in this case, which is perhaps unexpected, given that the shorter Lc and thicker tins

should reduce the inter-electrode capacitances that would otherwise help to equalize
Cgs and Cgd. The reason lies in the positive barrier heights and larger bandgap, which
restrain charge injection into the nanotube (see inset to Fig. 5), thereby reducing the
quantum capacitance contributions to Cgs and Cgd even more than the above physical
changes reduce the inter-electrode contributions. The higher barrier at the source
generally reduces the drain current, so both gm and gds are affected, and τeff ,3 is no
worse an approximation, relatively speaking, than it was for Device 1.

One of the reasons for the low fmax shown for Device 2 in Fig. 5 is that the
effective gate bias is lower than for Device 1 because of the higher threshold voltage
due to the thicker gate insulator. While this could be ameliorated by application of
a higher negative bias to the gate, or by using a higher work function for the gate
metal, Fig. 5 is useful because it illustrates that our equations are reasonable over an
effectively different bias range than applies to Device 1.
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Figure 5. fmax estimates for Device 2, at VDS = −0.5V, using Eq. (9) (solid)
and Eq. (13) with Eq. (14) (dots), Eq. (16) (circles), and Eq. (18) (crosses). The
inset illustrates the valence band edge profiles near the source contact for Devices 1
(dotted) and 2 (solid) at VGS = VDS = −0.5V. Energies are referenced to the
source Fermi level.

So far, we have used resistances of Rc ≈ 0.9 kΩ and ≈ 0.3 kΩ for Devices 1 and 2,
respectively, and Rg = 1 kΩ. To examine the effect of parametrically changing these
values, results are presented in Fig. 6 for Device 1. The error in the estimation of the
prediction of fmax was examined, after making each of the assumptions leading to the
three expressions for τeff . For the first two, the error in fmax is less than 1 % over the
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range of resistances shown in Fig. 6 (a). Fig. 6 (b) depicts the case after, additonally,
making assumption Eq. (17), and shows that the error is greatest at large Rc. This is
because the approximated term, (gm+2gds) → gm in simplifying Eq. (16), is multiplied
by the square of Rc, whereas Rg appears without exponentiation. Fig. 6 indicates that
the compact expressions are useful over a wide range of resistance values.
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Figure 6. Error in fmax prediction for Device 1, incurred by the use of: (a)
Eq. (16); (b) Eq. (18). VDS = −0.5V.
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Figure 7. fmax for Device 1 and fmax improvement for Device 1 computed
from Eq. (9) without assumptions, both at VDS = −0.5V. Solid line: Device 1
as originally specified; dotted line: Device 1 with tins = 8nm, Lc = 30nm,
Lus = 5nm, and Lud = 15nm.

Finally, we demonstrate the utility of the compact expressions in guiding
design towards CNFETs that should lead to improved fmax. Obviously, reducing
Cgd would be helpful because of its domination of the output admittance.
Eqs. (16) and (18) highlight this by elucidating the direct dependence of τeff on Cgd.
By contrast, τeff has a lesser dependence on transconductance. One way to trade-off
gm against Cgd would be to increase tins. Ways to reduce Cgd directly would be to
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shorten the drain contact Lc, and to increase the gate-drain underlap Lud. Although
the functional dependencies of gm and Cgd on tins and Lud are not readily attainable,
the beneficial effect to Device 1 of making these changes is illustrated in Fig. 7, where
the peak value of fmax is raised by about 15 % to 580GHz.

4. CONCLUSIONS

From this study of the extrapolated fmax in Schottky-barrier CNFETs it can be
concluded that:

(i) compact expressions for fmax can be derived that are useful over wide ranges of
physical properties, parasitic resistances and gate biases;

(ii) the compact expressions provide a useful guide to the design of high-frequency
devices;

(iii) fmax values in excess of 0.5THz should be realizable.
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