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In the modeling of carbon nanotube field-effect transistors, non-physical boundary conditions are often
employed at the borders of the simulation space. This paper investigates the consequences of imposing
these boundary conditions on common geometries, and proposes solutions which reduce the error without
compromising simulation efficiency.
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1 Introduction

The modeling of carbon nanotube field-effect transistors (CNFETs) is an active area of research, one of
the present goals of which is to evaluate the performance limits of devices as regards operation under
conditions of either DC [1, 2], or AC [3]. The majority of modeling work thus far has concentrated
on coaxial transistors with wrap-around gates, as such a structure offers the ultimate gate control over the
nanotube surface potential [4]. Fabrication of such structures is difficult, but is being vigorously pursued [5,
6]. In the numerical modeling of semiconductor devices it is customary to use a null Neumann boundary
condition, in which the normal component of the electric field set to zero, to terminate the open boundaries
of the model space. In nanoscale devices, this practice is widely followed [3, 7, 8], although strict null
Neumann boundaries are not typically found a priori. In this study, an asymptotic analysis examining
the electric field near the carbon nanotube (CN)-contact interface reveals that a Cartesian formulation of
Poisson’s equation is applicable in the local region and demonstrates that a null Neumann boundary is not
physically correct.

When the symmetry of the device allows a reduction in dimension to 2-D, a conformal transformation
yields an exact solution for the potential in all regions [9]. We use this method as a benchmark, solving the
cylindrical Poisson equation in all space, and compare against results obtained from imposing a null Neu-
mann condition at open boundaries in Schottky-barrier (SB) CNFETs. We consider the error introduced in
the DC ON-current, extending the earlier work of Ref. [9], in which only the equilibrium case was consid-
ered. We continue to evaluate a coaxial structure as a benchmark device in terms of scale and performance,
although the device dimensions are based on a state-of-the-art planar device [10], with short CN length,
high-permittivity gate dielectric, and thin source/drain contacts. We consider the effect of several geometry
modifications on the accuracy of the results, including reductions to the radius of the source/drain contacts,
changes to the gate dielectric thickness and material, and changes to the spacing between the source/drain
electrodes and the edge of the gate electrode.
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2 Modeling Procedures

Fig. 1 illustrates the coaxial structure simulated in this work: the 2-D Poisson equation is solved using
a standard finite-element software package1, and the effective-mass Schrödinger equation is solved self-
consistently in 1-D to compute the charge distribution [11]. The current is computed using the Landauer
equation [12]. In one instance, null Neumann boundary conditions are used at the open boundaries (see
Fig. 1 (b), dashed line); in the benchmark case, the conformal transformation method described in Ref. [9]
is used. Solving the conformally mapped problem numerically, error sources are restricted to the conver-
gence tolerance and the element size.
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Fig. 1 Geometry overview showing (a) the cylindrical device and (b) the radial cross-section including key device
parameters. The dashed line indicates the location of the null Neumann condition used to close the open boundaries.
A non-zero lsd is illustrated although typically, lsd = 0. The inset shows the important region at the contact/nanotube
interface and the regional numbering scheme used in the text.

As discussed in the following section, we observed the largest error when using “needle” contacts, i.e.
rsd = rcn. Therefore, we performed an asymptotic analysis of the potential at the CN-contact interface
near the CN surface to understand how this error may be reduced. This analysis follows the method
presented in Ref. [13, pp. 75-79], and extends it by including both a dielectric and a surface charge. The
surface charge Q is assumed to be constant in the region of interest.

We begin by establishing that sufficiently close to the contact, where r/rcn ≈ 1, a Cartesian formu-
lation of Poisson’s equation is valid. The situation is illustrated in the inset of Fig. 1 (b). Defining local
coordinates

x =
z − z0

δ
and y =

r − rcn

δ
, (1)

where δ � rcn and z0 is the location of the CN-contact interface, Poisson’s equation (for potential φ(z, r))
in cylindrical coordinates becomes

∂2φ

∂x2
+

∂2φ

∂y2
+

δ

δy + rcn

∂φ

∂y
= δ2 Q

ε
. (2)

1 FEMLAB, see http://www.comsol.com
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As r/rcn → 1, δy � rcn and the coefficient of the first partial derivative is O(δ). For a small δ, we
conclude that the cylindrical Poisson equation can be locally approximated by the Cartesian Laplacian.

Based on this conclusion, we proceed by transforming the Cartesian Laplacian into polar coordinates
and solving for the potential φ(σ, θ). Separation of variables is used to break the problem into a radial
equation and an angular equation with a well-known series solution [13], which can be written in terms
of one arbitrary constant K, which is related to the dielectric constant κins, boundary layer charge Q (see
inset, Fig. 1 b) and boundary conditions as σ → ∞. In this analysis, no attempt is made to join the inner
and outer regions, leaving the boundary conditions where σ → ∞ undefined. Therefore, K may be treated
as a geometry-dependent parameter chosen to account for the influence of structures in the outer region,
e.g. the gate, on the electric field. Assuming that σ � 1, and that Kj increases monotonically with j, the
series index, we approximate the general solution by the first solution in the series, yielding

φ(σ, θ) � a0 + aifi(K)σK [gi(K) cos (Kθ) + sin (Kθ)] , (3)

where i is a domain index. fi(K) and gi(K) represent the replacement of other constants in terms of K,
and may depend on κins and Q. This provides a means for including the iteratively computed charge in
the approximation to the electric field at a selected boundary.

This analysis provides two methods for reducing error introduced by the null Neumann boundary. Tak-
ing the derivative of Eq. 3 normal to the Neumann boundary at the location of the CN-contact interface,

∂φ

∂x

∣∣∣∣
i

= aiyKfi(K)
[
gi(K) sin

(
K tan−1 y

x

)
− cos

(
K tan−1 y

x

)]
(x2 + y2)K/2−1

+ 2xfi(K)
[
gi(K) cos

(
K tan−1 y

x

)
+ sin

(
K tan−1 y

x

)]
(x2 + y2)K/2 . (4)

At the CN-contact interface of a needle-contacted device, x = 0, and Eq. 4 implies that the normal
gradient of the potential will decay proportional to yK−1, where K is chosen based on the geometry and it
is implict that K < 1. Therefore, replacing the null Neumann boundary with a normal gradient that varies
as (r − rcn)K−1 will better approximate the physical boundary conditions, locally.

Alternately, we observe that by extending the simulation space to include a portion of the contact (lsd >
0), the error can be reduced. Near the surface of the CN and, equivalently, the surface of the contact in
region I, y � 1, and θ = tan−1(x/y) ≈ 0. As x is increased, such that x � y, Eq. 4 can be simplified to

∂φ

∂x

∣∣∣∣
I

≈ −aiKf1(K)xK−1 (5)

in the valid range of the local approximation. With K < 1, Eq. 5 suggests that as x is increased near the
surface of the contact, the gradient of the potential in the direction normal to the boundary approaches zero.

3 Results and Discussion

Results are presented for the five SB-CNFETs listed in Table 1. Note that all devices except for device 1
use a (10,0) CN. These latter devices have larger bandgaps, resulting in FETs with significantly improved
ON/OFF-current ratios [1]. The errors in the potential and drain current, evaluated with respect to the
results obtained using the conformal transformation are summarized in Table 2. The maximum error in
the potential was computed by taking the infinity norm of the relative error at all positions on the CN
surface. In all cases, the greatest deviation between potentials occurred close to the source. The valence
band diagrams in the vicinity of the source for each of devices 1-4 are shown in Fig. 2.

For devices 1 (circle) and 2 (square), there is no discernible difference in potential, however the relative
ON-current error in device 2 is higher because tunneling dominates in this positive-barrier device, and is
exponentially dependent on the shape of the barrier. Devices 3 (triangle) and 4 (diamond) illustrate the
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Table 1 Device Properties. In all cases lcn = 50 nm, and the CN work function is 4.73 eV [14]. Devices 1 and 2
have Pd end contacts with barrier heights obtained from Ref. [15], while devices 3-5 have (9,0) metallic CN contacts.
Geometry dimensions are referenced to Fig. 1 (b), Eg is the CN bandgap, and ΦB is the SB height for holes.

Device rcn (nm) rsd (nm) tins (nm) lgap (nm) κins Chirality Eg (eV) ΦB (eV)
1 [10] 0.85 6.15* 8.00 8.00 16 (22,0) 0.46 -0.04

2 0.39 5.69** 8.00 8.00 16 (10,0) 0.98 +0.30
3 0.39 0.39 8.00 8.00 16 (10,0) 0.98 +0.49
4 0.39 0.39 2.00 12.0 16 (10,0) 0.98 +0.49
5 0.39 0.39 8.00 8.00 25 (10,0) 0.98 +0.49

* Chosen to give rsd + rcn = 7 nm [10] ** Chosen to keep rsd − rcn = 5.3 nm, as in device 1

significant error that arises from non-physical boundaries near needle contacts. In the case of the aspect
ratio of the gate and source/drain contact gap to the dielectric thickness, comparing devices 3 and 4, we
note that by reducing lgap or increasing tins, the electric field between the gate and the source/drain contact
is oriented in a more radial direction, reducing the component normal to boundary. This makes the null
Neumann boundary a better approximation, reducing error. From the flux continuity condition, it is clear
that greater refraction will exist when a high-κ gate dielectric is present, reducing the normal component
of the potential gradient. In device 5, a 56% increase in κ with respect to device 3 led to a 44% decrease in
relative ON-current error.

Table 2 Error in potential and drain current for bias
conditions of VGS = VDS = −0.5V

Device Max. V Error (%) ID Error (%)
1 0.24 0.62
2 0.36 4.13
3 26.6 62.7
4 42.2 435
5 21.2 43.4
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Fig. 2 Valence band diagrams for devices 1 to 4
near the source contact, referenced to the Fermi level.
Conformal mapped case: solid line. Null Neumann
bounded: lsd = 0 nm, dashed line. Device 1: ◦, de-
vice 2: �, device 3: �, device 4: �

To illustrate how the large error associated with needle contacts can be reduced, we refer to the as-
ymptotic analysis. With K < 1, Eq. 5 suggests that as x is increased near the surface of the contact, the
gradient of the potential in the direction normal to the boundary will approach zero. This coincides with
the intuitive picture that a flat plate behaves like an infinite plane when observed at a position far from the
corners: the equipotential lines are parallel to the plate’s surface. By including a portion of the contact in
the simulation, and imposing the null Neumann boundary condition further from the CN-contact interface,
the error from the non-phyisical boundary will be reduced. To support this hypothesis, simulations were
performed for device 4 (the one with the largest error), with lsd extended beyond the value 0 nm used in the
previous simulations. Results are shown in Fig. 3 (a). In Fig. 3 (b), we demonstrate the validity of the as-
ymptotic analysis in the prediction of the local electric field. Extending the simulation space, we note that
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a limit in the reduction of error is reached at ≈ 2.5%. Based on the predictions of the asymptotic analysis
and the simulation results, we conclude that for contacts with the same radius as the CN, the boundary
should be extended to include lsd ≥ 10rcn of the contact to reduce the relative ON-current error below
10% or lsd ≥ 20rcn to ensure that the error remains below 5%. These metrics are arrived at for the worst
case CN-contact interface geometry and will apply conservatively for contacts with rsd > rcn.
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Fig. 3 Asymptotic analysis results for device 4. (a) Simulated relative ON-current error as lsd is increased, which
decays as an exponential ∝ lK−1

sd , K = 0.15 (see Eq. 5). It is assumed that as the electric field at the boundary
approaches zero, the error will decrease proportionally. (b) Comparison of dφ

dz
(circles) as computed at the CN-contact

interface (needle contacts) to the asymptotic approximation (solid) with K = 0.15. Away from the contact, the local
approximation is less valid. In the far field, we find it convenient to use dφ

dz
∝ r−1 as in an infinite rod to describe the

electric field.

4 Conclusions

From this error analysis of methods used to compute the potential in co-axial SB-CNFETs, we conclude
that caution must be exercised when employing non-physical boundaries in cases where narrow-radius
contacts are present. The error can be significantly reduced, without unduly compomising the simulation
efficiency, by extending the simulation space to include a length of contact.
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