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ABSTRACT

Analytical and numerical methods are used to solve Poisson’s equation for carbon nanotube

field-effect transistors (FETs) with a cylindrical surrounding gate and Schottky-barrier con-

tacts to the source and drain. The effect on the nanotube potential profile of varying the work

functions of all the electrodes, and the thickness and permittivity of the gate dielectric, is in-

vestigated. From these results the general trends to be expected in the above-threshold drain

current-voltage characteristics of Schottky-barrier nanotube FETs are predicted. The unusual

possibility of simultaneous electron and hole contributions to the drain current is revealed.

The sub-threshold characteristics are computed from a solution to Laplace’s equation, and

the sub-threshold slope is found to depend on gate dielectric thickness in a different manner

from that in other FETs.

1 INTRODUCTION

Carbon nanotubes (CNs) are being intensively investigated as possible structures from which

nanoscale transistors and logic gates might be fabricated [1, 2]. In devices where the gate

electrode covers the entire length of the nanotube, transistor action is achieved by the mod-

ulation, by the gate, of the potential profile at the Schottky-barrier contact appearing at

the source-tube interface [3, 4], rather than by the modulation of the channel properties, as

in a traditional, silicon-like field-effect transistor [5, 6]. Here we concentrate on the coaxial
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Schottky-barrier carbon nanotube field-effect transistor (SB-CNFET), in which the cylindrical

gate surrounds the tube and is insulated from it by a dielectric: the basic structure is shown in

Fig. 1. Whereas planar structures are currently being used experimentally [4], coaxial struc-

tures, although much more difficult to fabricate, are likely to exhibit better short-channel

performance [7], and, as regards modulating the Schottky-barrier thickness via capacitative

coupling between the gate and the contact [8], are likely to prove more efficient.

As a first step towards providing a model for these new devices, we examine the elec-

trostatics of coaxial SB-CNFETs, using both analytical and numerical procedures to obtain

the potential profile. Of course, the solution must be consistent with the electron and hole

charge induced on the surface of the nanotube, and any inherent charge, such as that due to

dopants. Although the latter are easily accommodated, they are not considered here in view

of the findings that procedures previously thought to lead to doping of a nanotube are more

probably serving to affect the work functions at the metal contacts to the CN [4]. Thus the

nanotubes here are considered to be intrinsic. The electron and hole charge densities can be

computed using the nearest-neighbour tight-binding approximation for the nanotube density

of states (DOS) [9]. Results are presented here for the equilibrium situation, i.e., the drain-

source voltage, VDS, is zero, as this is presently the only case for which the carrier distribution

functions are known with certainty. The dependence of the potential profile along the tube

on the work functions of the source-, drain- and gate-metallizations, and of the thickness and

permittivity of the gate dielectric, is reported. Outside of equilibrium, i.e., for VDS �= 0, the

distribution functions are likely to be highly distorted from their equilibrium shape [10]. This

is due to the absence of thermalizing collisions in this one-dimensional (1-D) system, for which

there is very little carrier-phonon interaction [11]. Presently, the only way to obtain exact

results for VDS �= 0 is to solve Laplace’s equation. This may be appropriate for studying

sub-threshold conduction. Such results are presented here and they indicate a sub-threshold

slope which depends on dielectric thickness in a different manner from that recently reported

for planar-geometry SB-CNFETs [12].

Although, as stressed above, a procedure for obtaining a fully self-consistent solution for

the above-threshold case is not yet available, the results presented here for the equilibrium

2



potential profiles can be used to infer the general form of the drain current-voltage (I-V)

characteristic. On doing this, the interesting spectre of having simultaneous injection of

electrons and holes into the nanotube is raised. The drain characteristics for such a situation

are briefly examined using a rudimentary, non-equilibrium, compact model [10], in which the

source and drain potential profiles are approximated by exponential expressions that have

their basis in the electrostatic solutions presented herein.

2 COAXIAL NANOTUBE ELECTROSTATICS

The electrostatic problem reduces to that of a bounded cylinder of length L and radius RG,

as shown in Fig. 1. In cylindrical coordinates, using the source electrode as reference, the

appropriate boundary conditions for the potential V (ρ, φ, z) are:

V (RG, φ, z) = VGS − ΦG/q

V (ρ, φ, 0) = −ΦS/q

V (ρ, φ, L) = VDS − ΦD/q

V (ρ, φ, z) = V (ρ, φ + 2π, z) , (1)

where ΦG, ΦS and ΦD are the work functions of the gate-, source- and drain-metallizations,

respectively, VGS is the gate-source voltage, and q is the magnitude of the electronic charge.

The boundary conditions at z = 0 and z = L are appropriate in the absence of Fermi-level

pinning [13]. Note, too, that V (0, φ, z) is assumed to be finite.

An analytical solution, at least for the case of a homogeneous permittivity within the

metallized enclosure, is possible following the methods of [14] and [15]. Such a procedure

is described in the Appendix. For the inhomogeneous case of different permittivities for the

dielectric and the nanotube, numerical techniques are easier to implement. We have used a

standard finite-element package for this purpose1.

The net carrier density, comprising electrons and holes, is taken to reside on the surface

of the CN, and is given by

Q(r′) =
1

2πρ′ δ(ρ
′ − RT )Qz(z

′) , (2)

1FEMLAB, see http://www.comsol.com
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where Qz(z
′) is the net 1-D carrier concentration, RT is the CN radius, and δ(x) is the

Dirac delta function. The nanotube charge needs to be computed self-consistently with the

potential on the nanotube but, as mentioned in the Introduction, a difficulty arises under non-

equilibrium conditions because of the present inability to rigorously specify the distribution

function for the hot carriers within the tube. However, for equilibrium conditions, there is

no such problem and the carrier concentrations are found by allowing the local electrostatic

potential to rigidly shift the CN DOS [14, 15]. Using the nearest-neighbour tight-binding

approximation [9], the DOS is symmetrical about EF , so the net 1-D carrier density at some

point along the intrinsic tube may be computed as

Qz(z
′) =

∫ ∞

0
g(E) [f(E + qV ′) − f(E − qV ′)] dE , (3)

where g(E) is the 1-D tube DOS, the degeneracy in the energy bands is as considered in [17],

f(E) is the Fermi-Dirac distribution function, EF is taken to be zero, and V ′ = V + ΦCN/q,

where ΦCN is the work function of the intrinsic carbon nanotube.

For the non-equilibrium case, the only exact solution that can be given presently is for

the case of no charge on the nanotube, namely: Qz(z
′) = 0. A complete solution awaits the

formulation of an appropriate solver, likely of the Poisson-Schrödinger variety.

3 RESULTS AND DISCUSSION

Results are presented for (16, 0) tubes having a radius of 0.63 nm, a length of 100 nm and a gate

work function of 4.5 eV. Various ratios of gate radius to tube radius, relative permittivity of

the dielectric, εr,d, and source- and drain-work functions, are considered. The electron affinity

for the carbon nanotube is taken to be 4.18 eV, based on a work function of 4.5 eV [16], and

an intrinsic-tube band gap of 0.64 eV. Unless otherwise stated, the relative permittivity of the

nanotube, εr,CN , is taken to be the same as that of the gate dielectric. The temperature is

taken to be 300 K.

At equilibrium conditions, and when ΦS = ΦD, the potential profile along the tube will

be symmetrical. Thus, only profiles near one contact need be shown. Fig. 2 shows the energy

band diagrams near the source for RG/RT = 10, εr,d = 3.9 and for various ΦS = ΦD with
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VDS = 0 V and VGS = 0.2 and 0.5 V. In Fig. 2(a), ΦS = 4.5 eV and corresponds to the case of

equal work functions for the metal and the nanotube, whereas ΦS = 4.33 eV [Fig. 2(b)] and

ΦS = 4.63 eV [Fig. 2(c)] refer to low- and high-metal work functions, respectively [13]. The

potential in the body of the tube, distal from the contacts, depends directly on VGS, leading

to potential spikes in the tube at the source and drain of height determined by both ΦS,D and

VGS. Only in the low-ΦS case at low VGS is thermionic emission likely to make a significant

contribution to the source current. In all other cases shown in Fig. 2, tunneling of electrons

through the spike will dominate.

The band diagrams for the same work function cases as used in Fig. 2, but for RG/RT = 50,

are shown in Fig. 3. The reduced band bending in the tube at the contacts, due to poorer

coupling between the gate and the nanotube, is very evident, and will lead to a dramatic

decrease in current, except in the low work function case at low VGS where, as mentioned

previously, the electron current will be due to thermionic emission and will be determined

by the height, and not the shape, of the barrier. The present state of the art as regards

gate-dielectric thinness is 2 nm [12]. Regarding the permittivity of the dielectric, recent work

has reported the use of zirconia [6], for which εr,d is around 5 times higher than that used

in obtaining the above figures. The effect of such a change in εr,d can be seen by comparing

Figs. 2 and 4. At VGS = 0.5 V, the increased capacitative coupling between the gate and the

tube drives the mid-tube potential energy to lower values, yet does not change significantly

the width of the source barrier at its base. Thus, obviously, an increased current for a given

bias will result from using a higher εr,d. At lower VGS, e.g., 0.2 V, the increased εr,d makes

essentially no difference to the potential profile because, at least for RG/RT = 10, there is

virtually no charge induced on the tube. From Figs. 2, 3 and 4, it appears that the width of

the potential barrier at its base depends strongly on the radius of the gate RG for the contact

geometry considered here, as has been remarked upon elsewhere [18], and here we indicate

that it also depends barely at all on VGS.

Note that the effect of changing the gate work function from the value of 4.5 eV used

here can be readily appreciated from the foregoing figures as an increase in ΦG of 0.1 eV, for

example, has the same effect as a corresponding decrease in VGS.
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Turning now to the non-equilibrium case, as mentioned above, only the case of zero charge

on the nanotube can be solved for exactly, pending the determination of the appropriate

distribution functions or wave-functions for the hot carriers. In sub-threshold, the charge

accumulation is not significant in the electrostatics solution, thus, we solve Laplace’s equa-

tion in order to study the behaviour in this regime [12]. The current is computed from the

Landauer-Büttiker formula, assuming ballistic transport and incorporating the effect of car-

rier transmission and reflection at the internal source/tube- and drain/tube-barriers in the

WKB-computed transmission coefficient, T ,

I =
4q

h

∫
T (E)[f(E) − f(E − qVDS)] dE . (4)

Some results for various gate/tube dimensions are shown in Fig. 5: note that the dielectric

thickness is td = RG−RT . The sub-threshold current can be due to either mainly electrons or

mainly holes, depending on the bias conditions. For VDS = 0.1 V, as used in obtaining Fig. 5,

at VGS = 0 there is no band bending at the source end of the tube, but there is a “spike” in

the valence band at the drain end of the tube, which permits a hole tunneling current. This

current increases as VGS becomes more negative. For positive values of VGS, a spike appears

in the conduction band at the source, thereby allowing electron tunneling, but the spike in the

valence band at the drain thickens, and so the hole current is reduced. These changes with VGS

lead to a minimum in current, which occurs at VGS = VDS/2, when the tunneling barriers for

source electrons and drain holes are of equal thickness. The magnitudes of the sub-threshold

slopes, |S| = |(d log10 I/dVGS)−1|, for both mainly electron conduction (VGS > VDS/2), and

mainly hole conduction (VGS < VDS/2), are identical, owing to the use here of a symmetrical

DOS function for the conduction- and valence-bands, and equal work functions for the source

and drain contacts.

In analyzing their planar SB-CNFETs, Heinze et al. [12] noted that changing the dielectric

thickness is equivalent to rescaling the gate voltage. Thus, they found that S and the tube

potential scaled with dielectric thickness in the same manner, i.e., as
√

td. This suggests

that we seek a scaling relationship for S in our coaxial devices by examining how the VGS-

dependent part of the potential in the vicinity of the source contact varies with td. This can

be accomplished by expanding the first term of the first mode of the Laplace solution from
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(8), i.e.,

V �
4(qVGS − ΦG)I0

(
πRT

L

)
πz
L

qπI0
(

πRG

L

) , (5)

where I0 is the zeroth-order Modified Bessel Function of the First Kind. Thus,

∂V

∂VGS
∝ 1

I0
(

πRG

L

) , (6)

and, therefore, we can expect

S � αI0(βtd) , (7)

where α and β are fitting parameters. It is found that a reasonable fit to S, from the data

included in Fig. 5, results with α ≈ 79 mV/decade and β ≈ 0.15 nm−1. The fact that a fit

can be obtained confirms that the dependence of S on td is related to the specific geometry

of the transistor, with a Bessel function being involved in this case because of the cylindrical

structure. Electrically, td is related, of course, to the gate capacitance, through which VGS is

coupled to the CN potential.

Considering now the case of above-threshold conduction, the solution to Laplace’s equation

for various values of VDS is worth examining as it gives an idea of the evolution of the barrier

profiles with drain-source voltage. The exact solutions for the drain end of the tube show

that the conduction-band spike diminishes with VDS, and that, on further increasing VDS, a

spike occurs in the valence band. The base widths of the potential profiles at both source and

drain are found, as in the equilibrium case, to be of the order of RG. This fact has been used,

in conjunction with a self-consistent procedure for solving for the potential and the charge in

the mid-length, field-free region of the tube, to generate compact expressions which describe

the potential along the entire length of the tube as a function of VGS and VDS [10].

Results are shown in Fig. 6 for the SB-CNFET for which the equilibrium band diagram is

shown in Fig. 2(a). As mentioned, the barrier at the drain for electron flow from the nanotube

into the drain diminishes as VDS is increased. This will lead to reduced reflection of source-

injected electrons and an increase, and eventual saturation, of the electron current. Further

increase in VDS causes a spike to appear in the valence band profile at the drain. This will

allow hole tunneling to occur, and raises the interesting prospect of a hole current issuing
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from the drain contact and adding to the electron current, thereby leading to a significant

increase in the total drain current. When the electron current is small due to the absence of a

tunneling barrier at the source, as will occur at low VGS, the drain current will be due almost

entirely to holes, and the drain I-V characteristic will appear near-exponential in shape.

An illustrative drain I-V characteristic is shown in Fig. 7. This data is generated from the

compact model of Castro et al. [10], as used to produce the potential profiles in Fig. 6, with the

base width of the potential barriers being taken as equal to 2RG. Castro’s model is based on

that of Guo et al. [5], and improves upon it by: introducing Schottky barrier contacts at the

source and drain; accounting for reflection of carriers in the tube between the source and drain

barriers; allowing for simultaneous electron and hole flows; and not demanding that the charge

in the mid-length tube region remain at its equilibrium value. It is an approximate model due

to the estimated shape of the barrier profiles, so the current magnitudes given in Fig. 7 are

also only approximate. However, they do confirm the evolution of the drain characteristics,

as inferred from the above discussion of the exact potential profiles displayed in the present

work. Furthermore, our predictions are consistent with very recent experimental results that

show near-exponential drain I-V characteristics for VGS < VDS [19].

As a final comment on the simultaneous presence of electrons and holes in the nanotube,

some recombination is to be expected, in which case the drain current will be less than the

sum of two non-interacting particle flows, and in practice may not increase as dramatically

as indicated here. Experimentally, evidence of recombination within the nanotube of a SB-

CNFET has been demonstrated via the measurement of light emission under bias conditions

appropriate for the simultaneous injection of holes and electrons [19].

4 CONCLUSIONS

From this work on the electrostatics of coaxial Schottky-barrier carbon nanotube FETs it can

be concluded that:

1. the potential barriers at the source/nanotube- and drain/nanotube-interfaces are strongly

affected by the work functions of the source, drain and gate, and by the thickness and

permittivity of the dielectric that surrounds the nanotube;
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2. an analytical solution for the potential distribution in the case of equal permittivities

of the gate dielectric and the nanotube gives a good approximation to the numerical

solution for the case when the difference in permittivities of the dielectric and tube

is taken into account. In other words, the radial field inside the nanotube, for this

particular geometry, is not of great importance;

3. the sub-threshold slope approaches the thermionic limit of ≈ 60 mV/decade as the di-

electric thickness is reduced, in a manner consistent with the cylindrical geometry of the

device;

4. from the results presented here, trends in the above-threshold drain I-V characteristics

can be inferred. The possibility of contributions to the drain current from both electron

and hole flow is indicated.
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Appendix: An Analytical Solution for the Potential

An analytical solution of the electrostatic problem posed by the structure of Fig. 1 is straight-

forward, at least in the homogeneous case of equal permittivities of the gate dielectric and the

nanotube, and is achieved by superposition of the solutions to two cases:

1. Laplace’s equation using the contact boundary conditions, for which the solution is most

easily obtained by solving for VDS = 0 and VGS = 0 separately; and

2. Poisson’s equation using homogeneous boundary conditions, for which the solution is

readily obtained via the Green’s function formalism.

The solution to the first case is

V =
∞∑

n=1

[
AnI0

(
nπρ
L

)
sin

(
nπz
L

)
+ BnJ0

(
x0nρ
RG

)
sinh

(
x0nz
RG

)

+CnJ0

(
x0nρ
RG

)
sinh

(
x0n(L−z)

RG

)]
, (8)

where

An =
2(qVGS − ΦG)(1 − (−1)n)

qnπI0
(

nπRG

L

) (9)

Bn =
2 (qVDS − ΦD)

qx0n sinh
(

x0nL
RG

)
J1(x0n)

(10)

Cn = − 2ΦS

qx0n sinh
(

x0nL
RG

)
J1(x0n)

, (11)

Jm(x) and Im(x) are the Bessel Function and Modified Bessel Function, respectively, of the

First Kind of Order m, and xmn is the nth solution to Jm(x) = 0.

The appropriate Green’s function for the second case, noting the angular symmetry in the

problem, is [20]

G(r; r′) =
−2

πLR2
G

∞∑
n=1

∞∑
l=1

J0

(
x0lρ
RG

)
J0

(
x0lρ

′
RG

)
sin

(
nπz
L

)
sin

(
nπz′

L

)

J2
1 (x0l)

[(
x0l

RG

)2
+

(
nπ
L

)2
] (12)

with the total solution for this case given by

V (r) = −q

ε

∫
Q(r′)G(r; r′) d3r′ , (13)
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where the integral is over the entire volume of the device, and ε is the permittivity.

The errors involved in assuming a homogeneous permittivity within the metal-bounded

space can be computed by comparing results from the above analytical analysis with those

from a numerical, finite-element analysis in which different permittivities for the gate dielectric

and nanotube are taken into account. For a (16, 0) tube with RG/RT = 10, all metal work

functions equal to 4.5 eV, εr,d = 3.9 and εr,CN = 1.0, the discrepancy between the predicted

potential profiles increases with VGS and reaches about 2% for a bias of VGS = 0.5 V, for

example. This discrepancy is only appreciable in the regions very close (≈ 5 nm) to the source

and drain contacts, as it is only here that a significant radial field exists within the tube due to

field lines from the gate terminating on the small portions of the source/drain electrodes that

actually cap the circular cross-section of the tube. For εr,d = 19.5, this error rises to about 3%

at VGS = 0.5 V. The homogeneous-permittivity analytical solution overestimates the width of

the potential barriers at the source and drain and, therefore, will lead to an understimation

of the current.
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7 Drain I-V characteristics, as calculated by the method of Ref. [10], for a (16, 0)

tube, RG/RT = 10, ΦS = ΦD = 4.5 eV and various values of VGS: 0 V (dotted),

0.2 V (dot-dashed), 0.4 V (dashed), 0.5 V (solid). . . . . . . . . . . . . . . . . . 22
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Figure 1: SB-CNFET model geometry. The gate forms the curved surface of the outer cylinder,

and the source and drain form the two ends. The semiconducting nanotube is placed coaxially

with the outer cylinder.
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Figure 2: Self-consistent equilibrium energy band diagram near the source for a (16, 0) tube

with a 5.6 nm gate dielectric thickness (RG/RT = 10), and ΦS = ΦD set to (a) 4.5 eV, (b)

4.33 eV, and (c) 4.63 eV. Data are for VDS = 0 V and VGS = 0.2 (dashed line) and 0.5 V (solid

line). Energies are with respect to the Fermi level (dotted line).

17



0 20 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

E
ne

rg
y 

(e
V

)

(a)

0 20 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4 (b)

Distance from source (nm)
0 20 40

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4 (c)

Figure 3: Self-consistent equilibrium energy band diagram near the source for a (16, 0) tube

with a 30.9 nm gate dielectric thickness (RG/RT = 50), and the same sequence of work

functions as in Fig. 2, namely: ΦS = ΦD set to (a) 4.5 eV, (b) 4.33 eV, and (c) 4.63 eV. Data

are for VDS = 0 V and VGS = 0.2 (dashed line) and 0.5 V (solid line). Energies are with respect

to the Fermi level (dotted line).
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Figure 4: Self-consistent equilibrium energy band diagram near the source for a (16, 0) tube

with a 5.6 nm gate dielectric thickness (RG/RT = 10), a gate dielectric with permittivity 5

times higher than used in Fig. 2, and the same sequence of work functions as in Fig. 2, namely:

ΦS = ΦD set to (a) 4.5 eV, (b) 4.33 eV, and (c) 4.63 eV. Data are for VDS = 0 V and VGS = 0.2

(dashed line) and 0.5 V (solid line). Energies are with respect to the Fermi level (dotted line).
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Figure 5: Sub-threshold current for the same tube properties as in Fig. 2(a), but with various

ratios of gate radius to tube radius, for VDS = 0.1 V. Note: the dielectric thickness is RG−RT .
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Figure 6: Energy band diagrams for the same tube properties as in Fig. 2(a) for VGS = 0.3 V

and various VDS: 0 V (dotted), 0.2 V (dashed), 0.5 V (solid). For the equilibrium case the

profile is the exact solution of Poisson’s equation; for VDS �= 0 the solutions are from Castro’s

compact model [10], with the base widths of the potential profiles at the source and drain

being taken as 2RG.
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Figure 7: Drain I-V characteristics, as calculated by the method of Ref. [10], for a (16, 0) tube,

RG/RT = 10, ΦS = ΦD = 4.5 eV and various values of VGS: 0 V (dotted), 0.2 V (dot-dashed),

0.4 V (dashed), 0.5 V (solid).
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