
Quantum Capacitance in Nanoscale Device Modeling

D.L. John,∗ L.C. Castro, and D.L. Pulfrey†

Department of Electrical and Computer Engineering,

University of British Columbia, Vancouver, BC V6T 1Z4, Canada

(Dated: August 16, 2004)

Abstract

Expressions for the “quantum capacitance” are derived, and regimes are discussed in which this

concept may be useful in modeling electronic devices. The degree of quantization is discussed for

one- and two-dimensional systems, and it is found that two-dimensional (2D) metals, and one-

dimensional (1D) metallic carbon nanotubes have a truly quantized capacitance over a restricted

bias range. For both 1D and 2D semiconductors, a continuous description of the capacitance is

necessary. The particular case of carbon nanotube field-effect transistors (CNFETs) is discussed in

the context of one-dimensional systems. The bias regime in which the quantum capacitance may

be neglected when computing the energy band diagram, in order to assist in the development of

compact CNFET models, is found to correspond only to the trivial case where there is essentially

no charge, and a solution to Laplace’s equation is sufficient for determining a CNFET’s energy

band diagram. For fully turned-on devices, then, models must include this capacitance in order to

properly capture the device behaviour. Finally, the relationship between the transconductance of

a CNFET and this capacitance is revealed.
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I. INTRODUCTION

The concept of “quantum capacitance” was used by Luryi1 in order to develop an equiv-

alent circuit model for devices that incorporate a highly conducting two-dimensional (2D)

electron gas. Recently, this term has also been used in the modeling of one-dimensional

(1D) systems, such as carbon nanotube (CN) devices.2,3 Here, we derive expressions for this

capacitance in one- and two-dimensions, showing the degree to which it is quantized in each

case.

Our discussion focuses primarily on the 1D case, for which we use the carbon nanotube

field-effect transistor (CNFET) as the model device, although the results apply equally well

to other types of 1D semiconductors. The 2D case has been discussed in Ref. 1, and is

included here only to illustrate key differences.

Equilibrium expressions are derived, and these are extended to cover two extremes in

the non-equilibrium characteristic, namely: phase-coherent and phase-incoherent transport.

In the former case, the wavefunction is allowed to interfere with itself, and may produce

resonances depending on the structure of the device. This results in the charge, and the

quantum capacitance, becoming strong functions of the length of the semiconductor. In

the latter case, this type of resonance is not allowed, and the quantum capacitance is more

uniform. Finally, we show how the quantum capacitance affects the transconductance of a

CNFET, where the Landauer expression can be used to compute the current.4

II. EQUILIBRIUM QUANTUM CAPACITANCE

In order to derive analytical expressions, it is assumed that our device is in quasi-

equilibrium, and that the carrier distribution functions are rigidly shifted by the local elec-

trostatic potential. If the density of states (DOS) is symmetric with respect to the Fermi

level, EF , as in graphene, then we can write the charge density, Q, due to electrons and

holes in the semiconductor, as

Q = q

∫ ∞

0

g(E)

[

f

(

E +
EG

2
+ qVa

)

− f

(

E +
EG

2
− qVa

)]

dE , (1)

where q is the magnitude of the electronic charge, E is the energy, g(E) is the 1D or 2D

DOS, f(E) is the Fermi-Dirac distribution function, Va is the local electrostatic potential,
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EG is the bandgap, and EF is taken to be mid-gap when Va = 0. The quantum capacitance,

CQ, is defined as

CQ =
∂Q

∂Va

, (2)

and has units of F/m2 and F/m in the 2D and 1D cases, respectively.

A. Two Dimensions

In the two-dimensional case, if we employ the effective-mass approximation with parabolic

bands, the DOS is given by

g(E) =
m

π~2
ν(E), (3)

where ν(E) is the number of contributing bands at a given energy, m is the effective mass,

and ~ is Dirac’s constant. If we combine this with Eqs. (1) and (2), and exchange the order

of differentiation and integration, we get

CQ =
mq2

4π~2kT

∫ ∞

0

ν(E)

[

sech2

(

E + EG

2
− qVa

2kT

)

+ sech2

(

E + EG

2
+ qVa

2kT

)]

dE , (4)

where k is Boltzmann’s constant, and T is temperature. If ν is a constant, we can perform

the integration to get

CQ =
νmq2

2π~2









2 − sinh
(

EG

2kT

)

cosh

(

EG
2

−qVa

2kT

)

cosh

(

EG
2

+qVa

2kT

)









, (5)

which reduces to

CQ =
νmq2

π~2
, (6)

when EG = 0 in agreement with Ref. 1, where metallic properties were assumed. Note that

this function is quantized in the metallic case, but continuous for a semiconductor. For EG

greater than about 15kT , however, the function makes a rapid transition from a small value

to that given by Eq. (6) when Va crosses EG/2, and is thus effectively quantized.

B. One Dimension

In the one-dimensional, effective-mass case, we have

g(E) =
ν(E)

π~

√

2m

E
. (7)
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The explicit energy dependence of this DOS complicates the evaluation of our integral for

CQ. The approach suggested in Ref. 2, i.e., using the fact that the derivative of f(E) is

peaked about EF in order to approximate this integral using a Sommerfeld expansion,5

cannot be done in general, due to the presence of singularities in the 1D DOS.

The capacitance is given by

CQ =
q2

2kTh

√

m

2

∫ ∞

0

ν(E)√
E

[

sech2

(

E + EG

2
− qVa

2kT

)

+ sech2

(

E + EG

2
+ qVa

2kT

)]

dE , (8)

where h is Planck’s constant. For sufficiently large |Va|, we can completely neglect one of

the sech2(·) terms. As a simple example, if Va = 0.1 V for a material with EG ' 1 eV, the

contribution to the integral from the first term is roughly four orders of magnitude greater

than the second. This approximation is equivalent to neglecting hole charge for positive Va,

and electron charge for negative Va. The solid line in Fig. 1 shows the equilibrium CQ as

a function of Va for a semiconductor with two valence and conduction bands: at 0.2 and

0.6 eV away from the Fermi level. An effective mass of 0.06m0 is assumed, where m0 is the

free-electron mass. The van Hove singularities, at each band edge, result in corresponding

peaks in CQ.

For a linear energy-wavevector relation, such as that near the Fermi level in graphene or a

metallic CN, the DOS is constant. This is the case considered by Burke,3 and is valid when Va

is such that f(E) is approximately zero before the first van Hove singularity is encountered

in the integral. Since the higher energy bands are not relevant to the integration under such

a condition, ν is constant, and the DOS is given by

g(E) =
2ν

hvF

, (9)

where vF is the Fermi velocity. The result is

CQ =
2νq2

hvF

, (10)

which agrees with the expression quoted in Ref. 3.

Note that in Eq. (8) CQ does not manifest itself as a multiple of some discrete amount,

so “quantum capacitance” is not an appropriate description for a 1D semiconductor, unlike

in the metallic 2D and metallic 1D CN cases, where the capacitance is truly quantized.
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III. GENERAL CONSIDERATIONS

We can now extend our discussion to include the non-equilibrium behaviour for a general,

1D, intrinsic semiconductor. All of the numerical results are based on the methods described

in Refs. 6 and 7, which consider the cases when transport in the 1D semiconductor is

either coherent or incoherent, respectively. While these methods were developed in order to

describe CNFETs, their use of the effective-mass approximation allows them to be used for

any device, and bias, where the semiconductor is described well by this approximation.

For phase-incoherent transport, we utilize a flux-balancing approach7,8 to describe the

charge in an end-contacted semiconductor. If we consider only the electrons that are far

away from the contacts, i.e., in the mid-length region, Eq. (1) becomes8

Q = −q

2

∫ ∞

0

g(E)T ∗(E)

[

f

(

E +
EG

2
− qVa

)(

2

TR(E)
− 1

)

+f

(

E +
EG

2
+ q (Vbias − Va)

)(

2

TL(E)
− 1

)]

dE , (11)

where Vbias is the potential difference between the end contacts, TL(E) and TR(E) are the

transmission probabilities at the left and right contacts respectively, T ∗(E) = TLTR/(TL +

TR − TLTR) is the composite transmission probability for the entire system, and Va is eval-

uated in the mid-length region. A similar expression holds for holes.

The first term in Eq. (11) resembles the equilibrium case, so we expect a similar form for

that contribution to CQ. The peak for each contributing band will occur at the same Va, but

the overall magnitude will be smaller due to the multiplication by the transmission function.

The second term is also similar except that these peaks will now be shifted by Vbias. This

is depicted by the dashed curve in Fig. 1, where the case illustrated by the solid curve has

been driven from equilibrium by Vbias = 0.2 V. Note the splitting of each large peak into two

smaller peaks: one at the same point, and the other shifted by Vbias. Of course, the numerical

value of the non-equilibrium capacitance depends on the exact geometry considered, as it

will influence both Va and the transmission probabilities in Eq. (11), but the trends shown

here are general and geometry-independent.

For the coherent, non-equilibrium case, it is instructive to consider a metal-contacted

device, in which the band discontinuities at the metal-semiconductor interfaces are suffi-

cient to allow significant quantum-mechanical reflection of carriers even above the barrier.

Further, we restrict our attention to short devices since the importance of coherence effects
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is diminshed as the device length is increased. Due to the phase-coherence, then, we have

a structure very much like a quantum well, even for devices where tunneling through the

contact barriers is not important. For our device, we expect quasi-bound states to emerge

at the approximate energies

En ' n2π2
~

2

2mL2
, (12)

where L is the semiconductor length. For m ' 0.06m0, such as in a (16, 0) CN, En '
6.3(n/L)2 eV, where L is in nanometres. This may be compared with the result for metallic

CNs, where the linear energy-wavevector relationship yields a 1/L dependence.3,9 Fig. 2(a)

displays CQ as a function of position and Va for this choice of m. The maxima, indicated as

brighter patches, show a dependence on Va that reveals the population of quasi-bound states.

Moreover, the maxima in position clearly show the characteristic modes expected from our

simple square-well analogy. Note that the peak-splitting occurs for coherent transport as

well, as shown in Fig. 2(b), where the peaks have been split by Vbias = 0.1 V.

The main difference, between the coherent and incoherent cases, is the presence of the

quasi-bound states. These serve to increase the number of CQ peaks, since each quasi-bound

state behaves like an energy band, and they also give rise to a strong spatial dependence.

While Fig. 2 shows only a single-band, coherent result, inclusion of multiple bands would

cause CQ to exhibit peaks corresponding to each band, and to each quasi-bound state.

IV. APPLICATION: CNFETS

We now elaborate on the above in the context of CNFET modeling. In particular, for

the purpose of developing compact models, it would be useful to ascertain the conditions

under which the quantum capacitance is small in comparison with that due to the insulator

geometry, a regime previously described as the “quantum capacitance limit.”2,10 To this

end, we examine a coaxial CNFET, and treat Va as the potential, with respect to the source

contact, on the surface of the CN in the mid-length region. CQ can be considered to be

in series with the insulator capacitance, Cins,
11 however, the ratio of these capacitances

is related not to Va and the gate-source voltage, VGS, but to ∂VGS/∂Va. If the charge

accumulation were linear over some bias range, as might be deemed appropriate at the local

extrema of CQ, we could relate this ratio directly to the potentials.

Knowledge of the “CQ limit” is beneficial since a relatively low CQ implies that changes
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in Va will closely track changes in VGS, obviating the need to calculate CQ when computing

the energy band diagram. Note, however, that CQ cannot be neglected when considering

performance metrics that depend on the total capacitance, e.g., the propagation delay may

be dominated by CQ in this limit. We find that CQ ¿ Cins only when Q is small enough

as to allow for the employment of a Laplace solution12 for the position-dependent potential:

eliminating the need for a cumbersome self-consistent Schrödinger-Poisson solution. The

difference between these solutions is illustrated in Fig. 3 for a coaxial CNFET with an

insulator thickness and CN radius of 2.5 and 0.6 nm, respectively, and an end contact work

function that is 0.6 eV less than that of the CN. Figs. 3(a) and (b) correspond to the off

and turn-on states, respectively. While equilibrium band diagrams are shown for simplicity,

similar trends prevail with the application of a drain-source voltage. For a device dominated

by thermionic emission, such as the one depicted here, the disagreement shown in (a), close

to the contacts, will not significantly affect the current calculation, while in (b), the error

would clearly be much greater. For a device dominated by tunneling, i.e., if the energy

bands had the opposite curvature, a similar discrepancy would result in a large error in the

current calculations due to the exponential dependence of the tunneling probability on the

barrier shape.

Now, we seek to theoretically quantify the condition under which CQ ¿ Cins. From

Fig. 1, we see that the first local maxima is on the order of 0.3 nF/m. For this peak to

be insignificant, we would require Cins to be orders of magnitude higher than this. For a

2 nm-thick dielectric in a coaxial device, we would require a relative permittivity of ∼ 530

in order to give two orders of magnitude difference between Cins and CQ. Reports of solid,

high-permittivity dielectrics for CN devices13–16 have quoted values only as high as 175 for

the relative permittivity,16 so we conclude that, for realistic dielectrics, we can expect to only

marginally enter the CQ limit, and that the first CQ peak will be significant. If we consider

an electrolytically-gated CNFET,17 we could perhaps achieve a relative permittivity of 80,

and an effective thickness of 1 nm, as considered in Ref. 2, but this would yield Cins ' 25CQ,

and would, again, only marginally be entering this limit.

For a short-channel, phase-coherent device, the requirement for negligible CQ is that

the Fermi levels for the injecting contacts should be far away from E1 ' 6.3/L2 eV. If we

consider positive applied voltages to the gate and drain, this would imply that qVa should

be more than about 5kT below EG/2 + E1. For the long-channel or phase-incoherent cases,
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this condition is given by E1 = 0, corresponding to the conduction band edge. The relative

importance of CQ, computed in the mid-length region of the device, is depicted in Fig. 4

for a phase-incoherent device as a function of VGS and the drain-source voltage, VDS, where

we note that VDS corresponds to Vbias, and that Va is influenced by both VDS and VGS.

Here, the aforementioned peak-splitting for non-zero VDS is clearly evident in the diverging

bright lines. Only for low bias voltages can CQ be neglected, as shown by the black region

in the centre of the figure. However, this figure also reveals the regions where it becomes

approximately constant, i.e., the bias ranges where the series capacitance relationship can

be used to estimate Va from VGS.11 Note, though, that this is a single-band calculation, and

these regions may not be as prevalent when higher transverse modes are considered.

Finally, we consider the influence of CQ on the transconductance for our model device,

which has a doubly-degenerate lowest band. If we employ the Landauer equation4 for trans-

port in two conducting channels, the current is

I =
4q

h

{
∫ ∞

EC

Tn(E) [f(E) − f (E + qVDS)] dE

−
∫ EV

−∞

Tp(E) [f(E) − f (E − qVDS)] dE

}

, (13)

where EC = EG/2 − qVa is the spatially constant conduction band edge in the mid-length

region of a long-channel device, EV = EC − EG is the valence band edge, and Tn(E) and

Tp(E) are the transmission probabilities for electrons and holes, respectively, from one end

contact to the other. The transconductance is defined as

gm =
∂I

∂VGS

, (14)

which yields

gm = 4q2

h

[

Cins

CQ+Cins

]

{Tn (EC) [f (EC) − f (EC + qVDS)]

−Tp (EV ) [f (EV ) − f (EV − qVDS)]} . (15)

Note that, if we assume only electron transport with CQ ¿ Cins, low temperature, and high

VDS, this expression reduces to the classic Landauer result4 for two conducting channels

gm =
4q2

h
Tn , (16)

which is the ultimate transconductance in this case.7,10 Fig. 5(a) shows the theoretical

transconductance, from Eq. (15), for our model device, while (b) and (c) show the energy-

distribution term (in curly braces), and the capacitance ratio term (in square brackets),
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respectively. The decrease in gm, at high VGS, is due primarily to the decreasing difference

in the contact distribution functions as, for example, EC becomes closer to qVDS. How-

ever, the exact magnitude of gm is dependent on the capacitance ratio. Further, CQ will

be responsible for additional oscillations in gm, as observed experimentally in Ref. 18 for

example, if higher bands, or quasi-bound states, are considered in the calculation. Such

transconductance features have also been predicted in Ref.19.

V. CONCLUSION

From this theoretical study on the charge-voltage relationship in one- and two-dimensional

systems, it can be concluded that:

1. the “quantum capacitance” occurs in discrete quanta for 2D and 1D metals if Va is

such that the Fermi level falls in a linear portion of the energy-wavevector relationship;

2. for 2D semiconductors, this capacitance is approximately quantized if the bandgap is

greater than about 15kT , and varies continuously otherwise;

3. for long, 1D systems with parabolic bands, and with Va such that these bands con-

tribute to the charge density, the equilibrium capacitance exhibits maxima that are

related to the number of contributing bands at a given energy;

4. application of a bias to a 1D semiconductor causes each equilibrium capacitance peak

to split into two smaller peaks, with one remaining at the equilibrium position, and

the other shifting by the applied bias;

5. the potential in the mid-length region of a 1D semiconductor cannot be computed, in

general, from potential division due to two capacitors in series due to the nonlinearity

of CQ;

6. for short, phase-coherent structures, the quasi-bound states cause the capacitance

peaks to occur at higher local electrostatic potentials, with additional maxima corre-

sponding to the occupation of these states;

7. for a CNFET, it is unlikely that the insulator capacitance can become high enough

to allow the quantum capacitance to be neglected in energy band calculations, except
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in cases where the accumulated charge is low enough that the solution to Laplace’s

equation is sufficient for the calculation, or if extremely high permittivity dielectrics

are used;

8. the quantum capacitance has a significant effect on the transconductance, and should

be considered when modeling CNFETs.
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FIGURES

Fig. 1. 1D quantum capacitance as a function of the local electrostatic potential at

equilibrium (solid), and for the mid-length region of an end-contacted semiconductor with

a bias voltage of 0.2 V (dashed) between the end contacts. The effective mass is taken to be

0.06m0, and energy bands are situated at 0.2 and 0.6 eV on either side of the Fermi level.

Fig. 2. 1D quantum capacitance, in arbitrary units, for a short-channel, phase-coherent

semiconductor as a function of position and the local electrostatic potential for applied bias

voltages of (a) 0 and (b) 0.1 V between the end contacts. The bright areas indicate higher

capacitance.

Fig. 3. Comparison of the equilibrium energy band diagrams, for a model CNFET, at

gate-source voltages of (a) 0.2 and (b) 0.32 V, computed via the solutions to a self-consistent

Schrödinger-Poisson system (solid), and to Laplace’s equation (dashed). The Fermi energy

is at 0 eV.

Fig. 4. Quantum capacitance for a long-channel CNFET as a function of the gate-

and drain-source voltages. Numerical values are displayed as a fraction of the insulator

capacitance.

Fig. 5. (a) Electron transconductance for a model CNFET as a function of the gate-source

voltage for drain-source voltages of 0.2 (solid) and 0.4 V (dashed). Constituent elements of

the theoretical transconductance from Eq. (15) are (b) the energy-distribution term (in curly

braces), and (c) the capacitance-ratio term (in square brackets).
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FIG. 2: D. L. John, J. Appl. Phys.
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FIG. 4: D. L. John, J. Appl. Phys.
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